Finding replicated Web collections

Author:

Cho Junghoo1,Shivakumar Narayanan1,Garcia-Molina Hector1

Affiliation:

1. Department of Computer Science, Stanford, CA

Abstract

Many web documents (such as JAVA FAQs) are being replicated on the Internet. Often entire document collections (such as hyperlinked Linux manuals) are being replicated many times. In this paper, we make the case for identifying replicated documents and collections to improve web crawlers, archivers, and ranking functions used in search engines. The paper describes how to efficiently identify replicated documents and hyperlinked document collections. The challenge is to identify these replicas from an input data set of several tens of millions of web pages and several hundreds of gigabytes of textual data. We also present two real-life case studies where we used replication information to improve a crawler and a search engine. We report these results for a data set of 25 million web pages (about 150 gigabytes of HTML data) crawled from the web.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems,Software

Reference13 articles.

1. Mirror, mirror on the Web: a study of host pairs with replicated content

2. Sergey Brin and Lawrence Page. Google search engine. http://www.google.com 1999. Sergey Brin and Lawrence Page. Google search engine. http://www.google.com 1999.

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GPU-accelerated relaxed graph pattern matching algorithms;The Journal of Supercomputing;2024-06-16

2. Graph Similarity Join (GSJ) Approach to Detect Near Duplicate Text Documents;Communications in Computer and Information Science;2024

3. GQP: A Framework for Scalable and Effective Graph Query-based Pricing;2022 IEEE 38th International Conference on Data Engineering (ICDE);2022-05

4. Graph pattern matching with counting quantifiers and label-repetition constraints;Cluster Computing;2019-08-30

5. Precise Detection of Content Reuse in the Web;ACM SIGCOMM Computer Communication Review;2019-05-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3