XTRACT

Author:

Garofalakis Minos1,Gionis Aristides2,Rastogi Rajeev1,Seshadri S.1,Shim Kyuseok3

Affiliation:

1. Bell Laboratories

2. Stanford University

3. KAIST and AITrc

Abstract

XML is rapidly emerging as the new standard for data representation and exchange on the Web. An XML document can be accompanied by a Document Type Descriptor (DTD) which plays the role of a schema for an XML data collection. DTDs contain valuable information on the structure of documents and thus have a crucial role in the efficient storage of XML data, as well as the effective formulation and optimization of XML queries. In this paper, we propose XTRACT, a novel system for inferring a DTD schema for a database of XML documents. Since the DTD syntax incorporates the full expressive power of regular expressions , naive approaches typically fail to produce concise and intuitive DTDs. Instead, the XTRACT inference algorithms employ a sequence of sophisticated steps that involve: (1) finding patterns in the input sequences and replacing them with regular expressions to generate “general” candidate DTDs, (2) factoring candidate DTDs using adaptations of algorithms from the logic optimization literature, and (3) applying the Minimum Description Length (MDL) principle to find the best DTD among the candidates. The results of our experiments with real-life and synthetic DTDs demonstrate the effectiveness of XTRACT's approach in inferring concise and semantically meaningful DTD schemas for XML databases.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems,Software

Reference25 articles.

1. On the complexity of minimum inference of regular sets

2. T. Bray J. Paoli and C. M. Sperberg-McQueen. Extensible markup language (XML). (www.w3.org/TR/REC-xml) T. Bray J. Paoli and C. M. Sperberg-McQueen. Extensible markup language (XML). (www.w3.org/TR/REC-xml)

3. Efficient identification of regular expressions from representative examples

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Language Models Enable Simple Systems for Generating Structured Views of Heterogeneous Data Lakes;Proceedings of the VLDB Endowment;2023-10

2. Schema inference for multi-model data;Proceedings of the 25th International Conference on Model Driven Engineering Languages and Systems;2022-10-23

3. A universal approach for multi-model schema inference;Journal of Big Data;2022-08-11

4. Making data platforms smarter with MOSES;Future Generation Computer Systems;2021-12

5. An Algorithm for Extracting Shape Expression Schemas from Graphs;Proceedings of the ACM Symposium on Document Engineering 2019;2019-09-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3