Ajna: A Wearable Shared Perception System for Extreme Sensemaking

Author:

Wilchek Matthew1ORCID,Luther Kurt1ORCID,Batarseh Feras A.2ORCID

Affiliation:

1. Department of Computer Science, Virginia Tech, USA

2. Department of Biological Systems Engineering, Virginia Tech, USA

Abstract

This paper introduces the design and prototype of Ajna, a wearable shared perception system for supporting extreme sensemaking in emergency scenarios. Ajna addresses technical challenges in Augmented Reality (AR) devices, specifically the limitations of depth sensors and cameras. These limitations confine object detection to close proximity and hinder perception beyond immediate surroundings, through obstructions, or across different structural levels, impacting collaborative use. It harnesses the Inertial Measurement Unit (IMU) in AR devices to measure users’ relative distances from a set physical point, enabling object detection sharing among multiple users across obstacles like walls and over distances. We tested Ajna's effectiveness in a controlled study with 15 participants simulating emergency situations in a multi-story building. We found that Ajna improved object detection, location awareness, and situational awareness, and reduced search times by 15%. Ajna's performance in simulated environments highlights the potential of artificial intelligence (AI) to enhance sensemaking in critical situations, offering insights for law enforcement, search and rescue, and infrastructure management.

Publisher

Association for Computing Machinery (ACM)

Reference104 articles.

1. A review on the applications of virtual reality, augmented reality and mixed reality in surgical simulation: an extension to different kinds of surgery

2. Sophia J. Abraham, Zachariah Carmichael, Sreya Banerjee, Rosaura G. VidalMata, Ankit Agrawal, Md Nafee Al Islam, Walter J. Scheirer, and Jane Cleland-Huang. 2021. Adaptive Autonomy in Human-on-the-Loop Vision-Based Robotics Systems. Vol. abs/2103.15053. https://conf.researchr.org/details/wain-2021/wain-2021-papers/11/Adaptive-Autonomy-in-Human-on-the-Loop-Vision-Based-Robotics-Systems

3. Adel, Liangkai Zhang, Jianing Wei, Artsiom Ablavatski, and Matthias Grundmann. 2020. Objectron: A Large Scale Dataset of Object-Centric Videos in the Wild with Pose Annotations. CoRR abs/2012.09988 (2020). arXiv:2012.09988 https://arxiv.org/abs/2012.09988

4. Kittipat Apicharttrisorn, Xukan Ran, Jiasi Chen, Srikanth V. Krishnamurthy, and Amit K. Roy-Chowdhury. 2019. Frugal following: power thrifty object detection and tracking for mobile augmented reality. In Proceedings of the 17th Conference on Embedded Networked Sensor Systems (New York, New York) (SenSys ’19). Association for Computing Machinery, New York, NY, USA, 96–109. https://doi.org/10.1145/3356250.3360044

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3