Geographical load balancing with renewables

Author:

Liu Zhenhua1,Lin Minghong1,Wierman Adam,Low Steven H.1,Andrew Lachlan L.H.2

Affiliation:

1. CMS, California Institute of Technology, Pasadena

2. Swinburne University of Technology, Australia

Abstract

Given the significant energy consumption of data centers, improving their energy efficiency is an important social problem. However, energy efficiency is necessary but not sufficient for sustainability, which demands reduced usage of energy from fossil fuels. This paper investigates the feasibility of powering internet-scale systems using (nearly) entirely renewable energy. We perform a trace-based study to evaluate three issues related to achieving this goal: the impact of geographical load balancing, the role of storage, and the optimal mix of renewables. Our results highlight that geographical load balancing can significantly reduce the required capacity of renewable energy by using the energy more efficiently with "follow the renewables" routing. Further, our results show that small-scale storage can be useful, especially in combination with geographical load balancing, and that an optimal mix of renewables includes significantly more wind than photovoltaic solar.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Cited by 112 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3