Dynamic Weighted Fairness with Minimal Disruptions

Author:

Im Sungjin1,Moseley Benjamin2,Munagala Kamesh3,Pruhs Kirk4

Affiliation:

1. University of California, Merced, Merced, CA, USA

2. Carnegie Mellon University, pittsburgh, PA, USA

3. Duke University, Durham, NC, USA

4. University of Pittsburgh, pittsburgh, PA, USA

Abstract

In this paper, we consider the following dynamic fair allocation problem: Given a sequence of job arrivals and departures, the goal is to maintain an approximately fair allocation of the resource against a target fair allocation policy, while minimizing the total number of \em disruptions, which is the number of times the allocation of any job is changed. We consider a rich class of fair allocation policies that significantly generalize those considered in previous work. We first consider the models where jobs only arrive, or jobs only depart. We present tight upper and lower bounds for the number of disruptions required to maintain a constant approximate fair allocation every time step. In particular, for the canonical case where jobs have weights and the resource allocation is proportional to the job's weight, we show that maintaining a constant approximate fair allocation requires Θ(łog^* n) disruptions per job, almost matching the bounds in prior work for the unit weight case. For the more general setting where the allocation policy only decreases the allocation to a job when new jobs arrive, we show that maintaining a constant approximate fair allocation requires Θ(łog n) disruptions per job. We then consider the model where jobs can both arrive and depart. We first show strong lower bounds on the number of disruptions required to maintain constant approximate fairness for arbitrary instances. In contrast we then show that there there is an algorithm that can maintain constant approximate fairness with $O(1)$ expected disruptions per job if the weights of the jobs are independent of the jobs arrival and departure order. We finally show how our results can be extended to the setting with multiple resources.

Funder

IBM

National Science Foundation

Office of Naval Research

Facebook

Google

Adobe

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Safety, Risk, Reliability and Quality,Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3