Progressive skyline computation in database systems

Author:

Papadias Dimitris1,Tao Yufei2,Fu Greg3,Seeger Bernhard4

Affiliation:

1. Hong Kong University of Science and Technology, Hong Kong

2. City University of Hong Kong, Hong Kong

3. JP Morgan Chase, New York, NY

4. Philipps University, Marburg, Germany

Abstract

The skyline of a d -dimensional dataset contains the points that are not dominated by any other point on all dimensions. Skyline computation has recently received considerable attention in the database community, especially for progressive methods that can quickly return the initial results without reading the entire database. All the existing algorithms, however, have some serious shortcomings which limit their applicability in practice. In this article we develop branch-and-bound skyline (BBS), an algorithm based on nearest-neighbor search, which is I/O optimal, that is, it performs a single access only to those nodes that may contain skyline points. BBS is simple to implement and supports all types of progressive processing (e.g., user preferences, arbitrary dimensionality, etc). Furthermore, we propose several interesting variations of skyline computation, and show how BBS can be applied for their efficient processing.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Cited by 575 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient and Privacy-Preserving Skyline Queries Over Encrypted Data Under a Blockchain-Based Audit Architecture;IEEE Transactions on Knowledge and Data Engineering;2024-09

2. Efficient Algorithms for Rank-Regret Minimization;IEEE Transactions on Knowledge and Data Engineering;2024-08

3. Efficient computation of Top-k G-Skyline groups on large-scale database;Information Sciences;2024-06

4. Parallel Computation of Dominance Scores for Multidimensional Datasets on GPUs;IEEE Transactions on Parallel and Distributed Systems;2024-06

5. Reverse Regret Query;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3