A Taxonomy for Learning with Perturbation and Algorithms

Author:

Yao Rujing1ORCID,Wu Ou2ORCID

Affiliation:

1. Department of Information Resources Management, Business School, Nankai University, Tianjin, China and Center for Applied Mathematics, Tianjin University, Tianjin, China

2. Center for Applied Mathematics, Tianjin University, Tianjin, China

Abstract

Weighting strategy prevails in machine learning. For example, a common approach in robust machine learning is to exert low weights on samples which are likely to be noisy or quite hard. This study summarizes another less-explored strategy, namely, perturbation. Various incarnations of perturbation have been utilized but it has not been explicitly revealed. Learning with perturbation is called perturbation learning and a systematic taxonomy is constructed for it in this study. In our taxonomy, learning with perturbation is divided on the basis of the perturbation targets, directions, inference manners, and granularity levels. Many existing learning algorithms including some classical ones can be understood with the constructed taxonomy. Alternatively, these algorithms share the same component, namely, perturbation in their procedures. Furthermore, a family of new learning algorithms can be obtained by varying existing learning algorithms with our taxonomy. Specifically, three concrete new learning algorithms are proposed for robust machine learning. Extensive experiments on image classification and text sentiment analysis verify the effectiveness of the three new algorithms. Learning with perturbation can also be used in other various learning scenarios, such as imbalanced learning, clustering, regression, and so on.

Funder

TJF

NSFC

Publisher

Association for Computing Machinery (ACM)

Reference95 articles.

1. M. Bazaraa, H. Sherali, and C. Shetty. 1993. Nonlinear Programming - Theory and Algorithms. John Wiley and Sons, Inc.

2. Curriculum learning

3. Universal Adversarial Training with Class-Wise Perturbations

4. Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. 2019. Learning imbalanced datasets with label-distribution-aware margin loss. In Proceedings of the Advances in Neural Information Processing Systems. 1565–1576.

5. Ordinal hyperplanes ranker with cost sensitivities for age estimation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3