Enabling Perception-Driven Optimization in Networking

Author:

Cheng Yihua1,Zhang Xu1,Jiang Junchen1

Affiliation:

1. University of Chicago, Chicago, IL, USA

Abstract

Service providers struggle to catch up with the rapid growth in bandwidth and latency demand of Internet videos and other applications. An essential contributor to this resource contention is the assumption that users are equally sensitive to service quality everywhere, so any low-quality incidents must be avoided. However, this assumption is not true. For example, our work and other parallel efforts have shown that more video users can be served with better quality of experience (QoE) if we embrace the fact that the QoE's sensitivity to video quality varies greatly with the video content. To unleash such benefits, the application systems must be driven by not only system measurement data but also user feedback data that capture users' perceptions of service quality. In this short paper, I will highlight some of our recent efforts toward the efficient collection of user feedback and enabling perception-driven optimization for Internet applications.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Reference12 articles.

1. Linear Live Streaming 101. https: //antmedia.io/linear-live-streaming-101/. Linear Live Streaming 101. https: //antmedia.io/linear-live-streaming-101/.

2. M. Butkiewicz , D. Wang , Z. Wu , H. V. Madhyastha , and V. Sekar . Klotski: Reprioritizing web content to improve user experience on mobile devices . In NSDI , 2015 . M. Butkiewicz, D. Wang, Z. Wu, H. V. Madhyastha, and V. Sekar. Klotski: Reprioritizing web content to improve user experience on mobile devices. In NSDI, 2015.

3. Not all Web Pages are Born the Same Content Tailored Learning for Web QoE Inference

4. Y. Cheng , A. Arapin , Z. Zhang , Q. Zhang , H. Li , N. Feamster , and J. Jiang . Grace++: Loss-resilient real-time video communication under high network latency. arXiv preprint arXiv:2305.12333 , 2023 . Y. Cheng, A. Arapin, Z. Zhang, Q. Zhang, H. Li, N. Feamster, and J. Jiang. Grace++: Loss-resilient real-time video communication under high network latency. arXiv preprint arXiv:2305.12333, 2023.

5. T. Hoßfeld , M. Hirth , J. Redi , F. Mazza , P. Korshunov , B. Naderi , M. Seufert , B. Gardlo , S. Egger , and C. Keimel . Best practices and recommendations for crowdsourced qoe-lessons learned from the qualinet task force" crowdsourcing ". 2014 . T. Hoßfeld, M. Hirth, J. Redi, F. Mazza, P. Korshunov, B. Naderi, M. Seufert, B. Gardlo, S. Egger, and C. Keimel. Best practices and recommendations for crowdsourced qoe-lessons learned from the qualinet task force" crowdsourcing". 2014.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3