Classification-aware hidden-web text database selection

Author:

Ipeirotis Panagiotis G.1,Gravano Luis2

Affiliation:

1. New York University, New York, NY

2. Columbia University, New York, NY

Abstract

Many valuable text databases on the web have noncrawlable contents that are “hidden” behind search interfaces. Metasearchers are helpful tools for searching over multiple such “hidden-web” text databases at once through a unified query interface. An important step in the metasearching process is database selection, or determining which databases are the most relevant for a given user query. The state-of-the-art database selection techniques rely on statistical summaries of the database contents, generally including the database vocabulary and associated word frequencies. Unfortunately, hidden-web text databases typically do not export such summaries, so previous research has developed algorithms for constructing approximate content summaries from document samples extracted from the databases via querying. We present a novel “focused-probing” sampling algorithm that detects the topics covered in a database and adaptively extracts documents that are representative of the topic coverage of the database. Our algorithm is the first to construct content summaries that include the frequencies of the words in the database. Unfortunately, Zipf's law practically guarantees that for any relatively large database, content summaries built from moderately sized document samples will fail to cover many low-frequency words; in turn, incomplete content summaries might negatively affect the database selection process, especially for short queries with infrequent words. To enhance the sparse document samples and improve the database selection decisions, we exploit the fact that topically similar databases tend to have similar vocabularies, so samples extracted from databases with a similar topical focus can complement each other. We have developed two database selection algorithms that exploit this observation. The first algorithm proceeds hierarchically and selects the best categories for a query, and then sends the query to the appropriate databases in the chosen categories. The second algorithm uses “shrinkage,” a statistical technique for improving parameter estimation in the face of sparse data, to enhance the database content summaries with category-specific words. We describe how to modify existing database selection algorithms to adaptively decide (at runtime) whether shrinkage is beneficial for a query. A thorough evaluation over a variety of databases, including 315 real web databases as well as TREC data, suggests that the proposed sampling methods generate high-quality content summaries and that the database selection algorithms produce significantly more relevant database selection decisions and overall search results than existing algorithms.

Funder

Division of Information and Intelligent Systems

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Reference76 articles.

1. Adamic L. A. 2002. Zipf power-laws and Pareto---A ranking tutorial. http://ginger.hpl.hp.com/shl/papers/ranking/ranking.html. Adamic L. A. 2002. Zipf power-laws and Pareto---A ranking tutorial. http://ginger.hpl.hp.com/shl/papers/ranking/ranking.html.

2. Snowball

3. Word Frequency Distributions

4. A probabilistic solution to the selection and fusion problem in distributed information retrieval

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Web Selection Based on Entity Association;Proceedings of the 9th International Conference on Computer Engineering and Networks;2020-07-01

2. Enhancing information source selection using a genetic algorithm and social tagging;International Journal of Information Management;2017-12

3. Structural analysis and classification of search interfaces for the deep web;The Computer Journal;2017-10-13

4. Ranking Deep Web Text Collections for Scalable Information Extraction;Proceedings of the 24th ACM International on Conference on Information and Knowledge Management;2015-10-17

5. What's the big deal about big data?;Big Data and Information Analytics;2015-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3