Skill-Based Matchmaking for Competitive Two-Player Games

Author:

Yuksel Cem1ORCID

Affiliation:

1. University of Utah, USA and Roblox, USA

Abstract

Skill-based matchmaking is a crucial component of competitive multiplayer games and it is directly tied to how the players would enjoy the game. We present a simple matchmaking algorithm that aims to achieve a target win rate for all players, making long win/loss streaks less probable. It is based on the estimated skill levels of players. Therefore, we also present a rating estimation for players that does not require any game-specific information and purely relies on game outcomes. Our evaluation shows that our methods are effective in estimating a player's rating, responding to changes in rating, and achieving a desirable win rate that avoids long win/loss streaks in competitive two-player games.

Publisher

Association for Computing Machinery (ACM)

Reference21 articles.

1. Modeling Intransitivity in Matchup and Comparison Data

2. Zhengxing Chen, Yizhou Sun, Magy Seif El-Nasr, and Truong-Huy D. Nguyen. 2017. Player Skill Decomposition in Multiplayer Online Battle Arenas. ArXiv abs/1702.06253 (2017). https://api.semanticscholar.org/CorpusID:16985515

3. Elo-MMR: A Rating System for Massive Multiplayer Competitions

4. Arpad Elo. 1978. The Rating of Chess Players Past and Present. Arco.

5. A comprehensive guide to chess ratings;Glickman Mark;Chess Journal,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3