A Survey on the Role of Centrality as Seed Nodes for Information Propagation in Large Scale Network

Author:

Dey Paramita1,Bhattacharya Subhayan2,Roy Sarbani2

Affiliation:

1. Government College of Engineering & Ceramic Technology, Kolkata, India

2. Jadavpur University, Kolkata, India

Abstract

From the popular concept of six-degree separation, social networks are generally analyzed in the perspective of small world networks where centrality of nodes play a pivotal role in information propagation. However, working with a large dataset of a scale-free network (which follows power law) may be different due to the nature of the social graph. Moreover, the derivation of centrality may be difficult due to the computational complexity of identifying centrality measures. This study provides a comprehensive and extensive review and comparison of seven centrality measures (clustering coefficients, Node degree, K-core, Betweenness, Closeness, Eigenvector, PageRank) using four information propagation methods (Breadth First Search, Random Walk, Susceptible-Infected-Removed, Forest Fire). Five benchmark similarity measures (Tanimoto, Hamming, Dice, Sorensen, Jaccard) have been used to measure the similarity between the seed nodes identified using the centrality measures with actual source seeds derived through Google's LargeStar-SmallStar algorithm on Twitter Stream Data. MapReduce has been utilized for identifying the seed nodes based on centrality measures and for information propagation simulation. It is observed that most of the centrality measures perform well compared to the actual source in the initial stage but are saturated after a certain level of influence maximization in terms of both affected nodes and propagation level.

Publisher

Association for Computing Machinery (ACM)

Reference38 articles.

1. Emergence of Scaling in Random Networks

2. Complex networks: Structure and dynamics

3. On variants of shortest-path betweenness centrality and their generic computation

4. Comprehensive survey on distance/similarity measures between probability density functions;Cha Sung-Hyuk;International Journal of Mathematical Models and Methods in Applied Sciences,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3