Class point approach for software effort estimation using stochastic gradient boosting technique

Author:

Satapathy Shashank Mouli1,Acharya Barada Prasanna1,Rath Santanu Kumar1

Affiliation:

1. NIT Rourkela, Odisha, India

Abstract

The success of software development depends on the proper estimation of the effort required to develop the software. Project managers require a reliable approach for software effort estimation. It is especially important during the early stages of the software development life cycle. Accurate software effort estimation is a major concern in software industries. Stochastic Gradient Boosting (SGB) is one of the machine learning techniques that helps in getting improved estimated values. SGB is used for improving the accuracy of models built on decision trees. In this paper, the main goal is to estimate the effort required to develop various software projects using the class point approach. Then, optimization of the effort parameters is achieved using the SGB technique to obtain better prediction accuracy. Further- more, performance comparisons of the models obtained using the SGB technique with the Multi Layer Perceptron and the Radial Basis Function Network are presented in order to highlight the performance achieved by each method.

Publisher

Association for Computing Machinery (ACM)

Reference17 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Software Effort Estimation using Machine Learning Algorithms;2022 6th International Conference on Electronics, Communication and Aerospace Technology;2022-12-01

2. Study of Learning Techniques for Effort Estimation in Object-Oriented Software Development;IEEE Transactions on Engineering Management;2022

3. An evaluation of effort estimation supported by change impact analysis in agile software development;Journal of Software: Evolution and Process;2019-04-04

4. A hybrid methodology for effort estimation in Agile development;Proceedings of the 2018 International Conference on Software and System Process;2018-05-26

5. Software Effort Estimation Using Modified Fuzzy C Means Clustering and Hybrid ABC-MCS Optimization in Neural Network;Journal of Intelligent Systems;2018-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3