MorphStream: Adaptive Scheduling for Scalable Transactional Stream Processing on Multicores

Author:

Mao Yancan1ORCID,Zhao Jianjun2ORCID,Zhang Shuhao3ORCID,Liu Haikun2ORCID,Markl Volker4ORCID

Affiliation:

1. National University of Singapore, Singapore, Singapore

2. Huazhong University of Science and Technology, Wuhan, China

3. Singapore University of Technology and Design, Singapore, Singapore

4. Technische Universität Berlin, Berlin, Germany

Abstract

Transactional stream processing engines (TSPEs) differ significantly in their designs, but all rely on non- adaptive scheduling strategies for processing concurrent state transactions. Subsequently, none exploit multicore parallelism to its full potential due to complex workload dependencies. This paper introduces MorphStream, which adopts a novel approach by decomposing scheduling strategies into three dimensions and then strives to make the right decision along each dimension, based on analyzing the decision trade-offs under varying workload characteristics. Compared to the state-of-the-art, MorphStream achieves up to 3.4 times higher throughput and 69.1% lower processing latency for handling real-world use cases with complex and dynamically changing workload dependencies.

Funder

DFG Priority Program

German Federal Ministry of Education and Research (BMBF) under grants BIFOLD - Berlin Institute for the Foundations of Learning and Data

German Federal Ministry of Education and Research (BMBF) under grants BBDC - Berlin Big Data Center

National Research Foundation, Singapore and Infocomm Media Development Authority under its Future Communications Research & Development Programme

SUTD Start-up Research Grant

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Reference41 articles.

1. 2018. Data Artisans Streaming Ledger Serializable ACID Transactions on Streaming Data https://www.data-artisans.com/blog/serializable-acid-transactions-on-streaming-data. (2018). 2018. Data Artisans Streaming Ledger Serializable ACID Transactions on Streaming Data https://www.data-artisans.com/blog/serializable-acid-transactions-on-streaming-data. (2018).

2. (2018). Serializable ACID Transactions on Streaming Data. https://www.ververica.com/blog/serializable-acid-transactions-on-streaming-data (2018). Serializable ACID Transactions on Streaming Data. https://www.ververica.com/blog/serializable-acid-transactions-on-streaming-data

3. FlowDB

4. TSpoon: Transactions on a stream processor

5. The CQL continuous query language: semantic foundations and query execution

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MorphStream: Scalable Processing of Transactions over Streams;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

2. Fast Parallel Recovery for Transactional Stream Processing on Multicores;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

3. General-purpose data stream processing on heterogeneous architectures with WindFlow;Journal of Parallel and Distributed Computing;2024-02

4. A survey on transactional stream processing;The VLDB Journal;2023-09-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3