BLOOP: Boolean Satisfiability-based Optimized Loop Pipelining

Author:

Fiege Nicolai1ORCID,Zipf Peter1ORCID

Affiliation:

1. University of Kassel, Germany

Abstract

Modulo scheduling is the premier technique for throughput maximization of loops in high-level synthesis by interleaving consecutive loop iterations. The number of clock cycles between data insertions is called the initiation interval (II). For throughput maximization, this value should be as low as possible; therefore, its minimization is the main optimization goal. Despite its long historical existence, modulo scheduling always remained a relevant research topic over the years with many exact and heuristic algorithms available in the literature. Nevertheless, we are able to leverage the scalability of modern Boolean Satisfiability (SAT) solvers to outperform state-of-the-art ILP-based algorithms for latency-optimal modulo scheduling for both integer and rational IIs. Our algorithm is able to compute valid modulo schedules for the whole CHStone and MachSuite benchmark suites, with 99% of the solutions being proven to be throughput optimal for a timeout of only 10 minutes per candidate II. For various time limits, not a single tested scheduler from the state of the art is able to compute more verified optimal solutions or even a single schedule with a higher throughput than our proposed approach. Using an HLS toolflow, we show that our algorithm can be effectively used to generate Pareto-optimal FPGA implementations regarding throughput and resource usage.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3