Affiliation:
1. Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Czech Republic
Abstract
A general multi-purpose data structure for an efficient representation of
conforming unstructured homogeneous
meshes for scientific computations on CPU and GPU-based systems is presented. The data structure is provided as open-source software as part of the TNL library (https://tnl-project.org/). The abstract representation supports almost any cell shape and common 2D quadrilateral, 3D hexahedron and arbitrarily dimensional simplex shapes are currently built into the library. The implementation is highly configurable via templates of the C++ language, which allows avoiding the storage of unnecessary dynamic data. The internal memory layout is based on state-of-the-art sparse matrix storage formats, which are optimized for different hardware architectures in order to provide high-performance computations. The proposed data structure is also suitable for meshes decomposed into several subdomains and distributed computing using the Message Passing Interface (MPI). The efficiency of the implemented data structure on CPU and GPU hardware architectures is demonstrated on several benchmark problems and a comparison with another library. Its applicability to advanced numerical methods is demonstrated with an example problem of two-phase flow in porous media using a numerical scheme based on the mixed-hybrid finite element method (MHFEM). We show GPU speed-ups that rise above 20 in 2D and 50 in 3D when compared to sequential CPU computations, and above 2 in 2D and 9 in 3D when compared to 12-threaded CPU computations.
Funder
Ministry of Education, Youth and Sports of the Czech Republic
Ministry of Health of the Czech Republic
Czech Science Foundation
Student Grant Agency of the Czech Technical University in Prague
Publisher
Association for Computing Machinery (ACM)
Subject
Applied Mathematics,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献