A Class of C 2 Interpolating Splines

Author:

Yuksel Cem1ORCID

Affiliation:

1. University of Utah

Abstract

We present a class of non-polynomial parametric splines that interpolate the given control points and show that some curve types in this class have a set of highly desirable properties that were not previously demonstrated for interpolating curves before. In particular, the formulation of this class guarantees that the resulting curves have C 2 continuity everywhere and local support, such that only four control points define each curve segment between consecutive control points. These properties are achieved directly due to the mathematical formulation used for defining this class, without the need for a global numerical optimization step. We also provide four example spline types within this class. These examples show how guaranteed self-intersection-free curve segments can be achieved, regardless of the placement of control points, which has been a limitation of prior interpolating curve formulations. In addition, they present how perfect circular arcs and linear segments can be formed by splines within this class, which also have been challenging for prior methods of interpolating curves.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. pκ-Curves: Interpolatory curves with curvature approximating a parabola;Computer Aided Geometric Design;2024-06

2. A Multi-Stable Curved Line Shape Display;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

3. pARam: Leveraging Parametric Design in Extended Reality to Support the Personalization of Artifacts for Personal Fabrication;Proceedings of the CHI Conference on Human Factors in Computing Systems;2024-05-11

4. Enhancing flexibility and control in κ-curve using fractional Bézier curves;Alexandria Engineering Journal;2024-02

5. K-Surfaces: Bézier-Splines Interpolating at Gaussian Curvature Extrema;ACM Transactions on Graphics;2023-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3