Dedicated Hardware Accelerators for Processing of Sparse Matrices and Vectors: A Survey

Author:

Isaac–Chassande Valentin1ORCID,Evans Adrian1ORCID,Durand Yves1ORCID,Rousseau Frédéric2ORCID

Affiliation:

1. Université Grenoble Alpes, CEA, LIST, Grenoble, France

2. Université Grenoble Alpes, CNRS, Grenoble INP, TIMA, Saint-Martin-d'Heres, France

Abstract

Performance in scientific and engineering applications such as computational physics, algebraic graph problems or Convolutional Neural Networks (CNN), is dominated by the manipulation of large sparse matrices—matrices with a large number of zero elements. Specialized software using data formats for sparse matrices has been optimized for the main kernels of interest: SpMV and SpMSpM matrix multiplications, but due to the indirect memory accesses, the performance is still limited by the memory hierarchy of conventional computers. Recent work shows that specific hardware accelerators can reduce memory traffic and improve the execution time of sparse matrix multiplication, compared to the best software implementations. The performance of these sparse hardware accelerators depends on the choice of the sparse format, COO , CSR , etc, the algorithm, inner-product , outer-product , Gustavson , and many hardware design choices. In this article, we propose a systematic survey which identifies the design choices of state-of-the-art accelerators for sparse matrix multiplication kernels. We introduce the necessary concepts and then present, compare, and classify the main sparse accelerators in the literature, using consistent notations. Finally, we propose a taxonomy for these accelerators to help future designers make the best choices depending on their objectives.

Publisher

Association for Computing Machinery (ACM)

Reference93 articles.

1. Richard Barrett, Michael Berry, Tony F. Chan, James Demmel, June Donato, Jack Dongarra, Victor Eijkhout, Roldan Pozo, Charles Romine, and Henk van der Vorst. 1994. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. Society for Industrial.

2. James Alfred Ang Brian W. Barrett Kyle Bruce Wheeler and Richard C. Murphy. 2010. Introducing the graph 500. Office of Scientific United States.

3. Bahar Asgari, Ramyad Hadidi, Tushar Krishna, Hyesoon Kim, and Sudhakar Yalamanchili. 2020. ALRESCHA: A lightweight reconfigurable sparse-computation accelerator. In Proceedings of the 2020 IEEE International Symposium on High Performance Computer Architecture (HPCA). 249–260.

4. Venkitesh Ayyar, Evan Weinberg, Richard C. Brower, M .A. Clark, and Mathias Wagner. 2023. Optimizing staggered multigrid for exascale performance. In Proceedings of the 39th International Symposium on Lattice Field Theory — PoS (LATTICE2022). 335.

5. Parallel Triangle Counting and Enumeration Using Matrix Algebra

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SpDCache: Region-Based Reduction Cache for Outer-Product Sparse Matrix Kernels;2024 IEEE 35th International Conference on Application-specific Systems, Architectures and Processors (ASAP);2024-07-24

2. Sparm: A Sparse Matrix Multiplication Accelerator Supporting Multiple Dataflows;2024 IEEE 35th International Conference on Application-specific Systems, Architectures and Processors (ASAP);2024-07-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3