Data Reduction for Maximum Matching on Real-World Graphs

Author:

Koana Tomohiro1,Korenwein Viatcheslav1,Nichterlein André1,Niedermeier Rolf1,Zschoche Philipp1

Affiliation:

1. TU Berlin, Germany

Abstract

Finding a maximum-cardinality or maximum-weight matching in (edge-weighted) undirected graphs is among the most prominent problems of algorithmic graph theory. For n -vertex and m -edge graphs, the best-known algorithms run in Õ( mn ) time. We build on recent theoretical work focusing on linear-time data reduction rules for finding maximum-cardinality matchings and complement the theoretical results by presenting and analyzing (thereby employing the kernelization methodology of parameterized complexity analysis) new (near-)linear-time data reduction rules for both the unweighted and the positive-integer-weighted case. Moreover, we experimentally demonstrate that these data reduction rules provide significant speedups of the state-of-the art implementations for computing matchings in real-world graphs: the average speedup factor is 4.7 in the unweighted case and 12.72 in the weighted case.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Association for Computing Machinery (ACM)

Subject

Theoretical Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fast Parameterized Preprocessing for Polynomial-Time Solvable Graph Problems;Communications of the ACM;2024-03-25

2. Computing maximum matchings in temporal graphs;Journal of Computer and System Sciences;2023-11

3. Parameterized Complexity of Diameter;Algorithmica;2022-09-05

4. Shared-memory implementation of the Karp-Sipser kernelization process;2021 IEEE 28th International Conference on High Performance Computing, Data, and Analytics (HiPC);2021-12

5. A Linear-Time Parameterized Algorithm for Computing the Width of a DAG;Graph-Theoretic Concepts in Computer Science;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3