Diffusion Models: A Comprehensive Survey of Methods and Applications

Author:

Yang Ling1ORCID,Zhang Zhilong1ORCID,Song Yang2ORCID,Hong Shenda1ORCID,Xu Runsheng3ORCID,Zhao Yue4ORCID,Zhang Wentao5ORCID,Cui Bin1ORCID,Yang Ming-Hsuan6ORCID

Affiliation:

1. Peking University, China

2. OpenAI, USA

3. University of California, Los Angeles, USA

4. University of Southern California, USA

5. Mila - Québec AI Institute, HEC Montréal, Canada

6. University of California at Merced and Yonsei University, USA and Korea

Abstract

Diffusion models have emerged as a powerful new family of deep generative models with record-breaking performance in many applications, including image synthesis, video generation, and molecule design. In this survey, we provide an overview of the rapidly expanding body of work on diffusion models, categorizing the research into three key areas: efficient sampling, improved likelihood estimation, and handling data with special structures. We also discuss the potential for combining diffusion models with other generative models for enhanced results. We further review the wide-ranging applications of diffusion models in fields spanning from computer vision, natural language processing, temporal data modeling, to interdisciplinary applications in other scientific disciplines. This survey aims to provide a contextualized, in-depth look at the state of diffusion models, identifying the key areas of focus and pointing to potential areas for further exploration. Github: https://github.com/YangLing0818/Diffusion-Models-Papers-Survey-Taxonomy

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Reference290 articles.

1. Diffusion-based time series imputation and forecasting with structured state space models;Alcaraz Juan Miguel Lopez;arXiv preprint arXiv:2208.09399,2022

2. SegDiff: Image segmentation with diffusion probabilistic models;Amit Tomer;arXiv preprint arXiv:2112.00390,2021

3. Protein structure and sequence generation with equivariant denoising diffusion probabilistic models;Anand Namrata;arXiv preprint arXiv:2205.15019,2022

4. Reverse-time diffusion equation models

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3