Affiliation:
1. Lahore University of Management Sciences, Lahore, Pakistan
Abstract
With the increasing demand for higher performance, the adoption of multicores has been a major stepping stone in the evolution of hard real-time systems. Though the computational bandwidth is increased due to parallel processing, the indispensable interactivity between the hierarchical memory sub-system and multiple cores has further aggravated the already complex worst case execution time (WCET) analysis of tasks. Furthermore, caches have the biggest influence on task execution time, and the inclusion of shared caches further increases the unpredictability of the system. Cache partitioning techniques have been proposed as a counter-measure to decouple the shared cache latency from the WCET. However, existing energy-efficient scheduling algorithms are oblivious to the unpredictable nature of shared caches or cache partitioning techniques, thus, diminishing their applicability to real-world systems. Without considering inter-task cache contention, directly using existing algorithms or attempting to allocate and schedule a taskset with cache-partition assignments can result in cache violations. To overcome this dilemma, we propose a novel approach to model inter-task cache contention as a dependency graph to be used by well-established algorithms to minimize energy consumption. Extensive simulations demonstrate the effectiveness of our approach to minimize energy consumption while also avoiding cache violations.
Publisher
Association for Computing Machinery (ACM)
Subject
Hardware and Architecture,Software
Reference67 articles.
1. Partitioning and selection of data consistency mechanisms for multicore real-time systems;Zaid;ACM Trans. Embed. Comput. Syst.,2019
2. Energy-aware partitioning for multiprocessor real-time systems
3. Energy-Aware Scheduling for Real-Time Systems
4. PDPA
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献