U-HAR

Author:

Meyer Johannes1,Frank Adrian2,Schlebusch Thomas1,Kasneci Enkelejda2

Affiliation:

1. Robert Bosch GmbH, Renningen, Germany

2. University of Tübingen, Tübingen, Germany

Abstract

After the success of smartphones and smartwatches, smart glasses are expected to be the next smart wearable. While novel display technology allows the seamlessly embedding of content into the FOV, interaction methods with glasses, requiring the user for active interaction, limiting the user experience. One way to improve this and drive immersive augmentation is to reduce user interactions to a necessary minimum by adding context awareness to smart glasses. For this, we propose an approach based on human activity recognition, which incorporates features, derived from the user's head- and eye-movement. Towards this goal, we combine an commercial eye-tracker and an IMU to capture eye- and head-movement features of 7 activities performed by 20 participants. From a methodological perspective, we introduce U-HAR, a convolutional network optimized for activity recognition. By applying a few-shot learning, our model reaches an macro-F1-score of 86.59%, allowing us to derive contextual information.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Human-Computer Interaction,Social Sciences (miscellaneous)

Reference33 articles.

1. Amazon. 2019. Echo Frames - Eyeglasses with Alexa. online. https://www.amazon.com/Staging-Product-Not-Retail-Sale/dp/B07W72XKPJ Amazon. 2019. Echo Frames - Eyeglasses with Alexa. online. https://www.amazon.com/Staging-Product-Not-Retail-Sale/dp/B07W72XKPJ

2. C. Braunagel , E. Kasneci , W. Stolzmann , and W. Rosenstiel . 2015 . Driver-Activity Recognition in the Context of Conditionally Autonomous Driving. In 2015 IEEE 18th International Conference on Intelligent Transportation Systems . 1652--1657 . https://doi.org/10.1109/ITSC. 2015 .268 C. Braunagel, E. Kasneci, W. Stolzmann, and W. Rosenstiel. 2015. Driver-Activity Recognition in the Context of Conditionally Autonomous Driving. In 2015 IEEE 18th International Conference on Intelligent Transportation Systems . 1652--1657. https://doi.org/10.1109/ITSC.2015.268

3. A tutorial on human activity recognition using body-worn inertial sensors

4. Eye Movement Analysis for Activity Recognition Using Electrooculography. Pattern Analysis and Machine Intelligence;Bulling Andreas;IEEE Transactions on,2011

5. Andreas Bulling , Jamie A. Ward , Hans Gellersen , and Gerhard Tröster . 2008. Robust Recognition of Reading Activity in Transit Using Wearable Electrooculography . In Pervasive Computing, Jadwiga Indulska, Donald J. Patterson, Tom Rodden, and Max Ott (Eds.). Springer Berlin Heidelberg , Berlin, Heidelberg , 19--37. Andreas Bulling, Jamie A. Ward, Hans Gellersen, and Gerhard Tröster. 2008. Robust Recognition of Reading Activity in Transit Using Wearable Electrooculography. In Pervasive Computing, Jadwiga Indulska, Donald J. Patterson, Tom Rodden, and Max Ott (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 19--37.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3