Building MEMS-based storage systems for streaming media

Author:

Rangaswami Raju1,Dimitrijević Zoran2,Chang Edward2,Schauser Klaus3

Affiliation:

1. Florida International University, Miami, FL

2. Google, Inc., Mountain View, CA

3. University of California, Santa Barbara, CA

Abstract

The performance of streaming media servers has been limited by the dual requirements of high disk throughput (to service more clients simultaneously) and low memory use (to decrease system cost). To achieve high disk throughput, disk drives must be accessed with large IOs to amortize disk access overhead. Large IOs imply an increased requirement of expensive DRAM, and, consequently, greater overall system cost. MEMS-based storage, an emerging storage technology, is predicted to offer a price-performance point between those of DRAM and disk drives. In this study, we propose storage architectures that use the relatively inexpensive MEMS-based storage devices as an intermediate layer (between DRAM and disk drives) for temporarily staging large disk IOs at a significantly lower cost. We present data layout mechanisms and synchronized IO scheduling algorithms for the real-time storage and retrieval of streaming data within such an augmented storage system. Analytical evaluation suggests that MEMS-augmented storage hierarchies can reduce the cost and improve the throughput of streaming servers significantly.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data Scheduling Algorithm of Mobile Education Streaming Media Based on Improved Random Forest;2024 Asia-Pacific Conference on Software Engineering, Social Network Analysis and Intelligent Computing (SSAIC);2024-01-10

2. A DATA PARTITION METHOD FOR MEMS-BASED STORAGE DEVICES IN A DISTRIBUTED COMPUTING ENVIRONMENT;International Journal of Software Engineering and Knowledge Engineering;2013-02

3. Migration-Resistant Policies for Probe-Wear Leveling in MEMS Storage Devices;ACM Transactions on Design Automation of Electronic Systems;2012-10

4. Optimizing MEMS-based storage devices for mobile battery-powered systems;ACM Transactions on Storage;2010-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3