Implicit Visual Learning

Author:

Liu Yan1,Liu Yang1,Zhong Shenghua1,Wu Songtao1

Affiliation:

1. The Hong Kong Polytechnic University, Hong Kong SAR, China

Abstract

According to consciousness involvement, human’s learning can be roughly classified into explicit learning and implicit learning. Contrasting strongly to explicit learning with clear targets and rules, such as our school study of mathematics, learning is implicit when we acquire new information without intending to do so. Research from psychology indicates that implicit learning is ubiquitous in our daily life. Moreover, implicit learning plays an important role in human visual perception. But in the past 60 years, most of the well-known machine-learning models aimed to simulate explicit learning while the work of modeling implicit learning was relatively limited, especially for computer vision applications. This article proposes a novel unsupervised computational model for implicit visual learning by exploring dissipative system, which provides a unifying macroscopic theory to connect biology with physics. We test the proposed Dissipative Implicit Learning Model (DILM) on various datasets. The experiments show that DILM not only provides a good match to human behavior but also improves the explicit machine-learning performance obviously on image classification tasks.

Funder

National Natural Science Foundation of China

The Hong Kong Polytechnic University

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computer Information Technology and Network Security Analysis of Intelligent Image Recognition;2022 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC);2022-04-14

2. Preschool Education Interactive System Based on Smart Sensor Image Recognition;Wireless Communications and Mobile Computing;2022-03-03

3. Fracture failure analysis of KL crankshaft;Engineering Failure Analysis;2020-05

4. Deep Learning for Environmentally Robust Speech Recognition;ACM Transactions on Intelligent Systems and Technology;2018-09-30

5. Cognitive Business Process Management for Adaptive Cyber-Physical Processes;Business Process Management Workshops;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3