Optimizing the Performance of Containerized Cloud Software Systems Using Adaptive PID Controllers

Author:

Sabuhi Mikael1,Mahmoudi Nima1,Khazaei Hamzeh2

Affiliation:

1. Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada

2. Department of Electrical Engineering and Computer Science, York University, Toronto, Canada

Abstract

Control theory has proven to be a practical approach for the design and implementation of controllers, which does not inherit the problems of non-control theoretic controllers due to its strong mathematical background. State-of-the-art auto-scaling controllers suffer from one or more of the following limitations: (1) lack of a reliable performance model, (2) using a performance model with low scalability, tractability, or fidelity, (3) being application- or architecture-specific leading to low extendability, and (4) no guarantee on their efficiency. Consequently, in this article, we strive to mitigate these problems by leveraging an adaptive controller, which is composed of a neural network as the performance model and a Proportional-Integral-Derivative (PID) controller as the scaling engine. More specifically, we design, implement, and analyze different flavours of these adaptive and non-adaptive controllers, and we compare and contrast them against each other to find the most suitable one for managing containerized cloud software systems at runtime. The controller’s objective is to maintain the response time of the controlled software system in a pre-defined range, and meeting the Service-level Agreements, while leading to efficient resource provisioning.

Funder

Google

Publisher

Association for Computing Machinery (ACM)

Subject

Software,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3