Anomaly Detection in Dynamic Graphs: A Comprehensive Survey

Author:

Ekle Ocheme Anthony1ORCID,Eberle William1ORCID

Affiliation:

1. Tennessee Technological University, Cookeville, TN, USA

Abstract

This survey article presents a comprehensive and conceptual overview of anomaly detection (AD) using dynamic graphs. We focus on existing graph-based AD techniques and their applications to dynamic networks. The contributions of this survey article include the following: (i) a comparative study of existing surveys on AD; (ii) a Dynamic Graph-based anomaly detection (DGAD) review framework in which approaches for detecting anomalies in dynamic graphs are grouped based on traditional machine learning models, matrix transformations, probabilistic approaches, and deep learning approaches; (iii) a discussion of graphically representing both discrete and dynamic networks; and (iv) a discussion of the advantages of graph-based techniques for capturing the relational structure and complex interactions in dynamic graph data. Finally, this work identifies the potential challenges and future directions for detecting anomalies in dynamic networks. This DGAD survey approach aims to provide a valuable resource for researchers and practitioners by summarizing the strengths and limitations of each approach, highlighting current research trends, and identifying open challenges. In doing so, it can guide future research efforts and promote advancements in AD in dynamic graphs.

Funder

College of Engineering, the Machine Intelligence and Data Science Center, and the Department of Computer Science at Tennessee Tech University

Publisher

Association for Computing Machinery (ACM)

Reference186 articles.

1. Lada A. Adamic and Natalie Glance. 2005. The political blogosphere and the 2004 US election: Divided they blog. In Proceedings of the 3rd International Workshop on Link Discovery. 36–43.

2. A survey of anomaly detection techniques in financial domain;Ahmed Mohiuddin;Future Generation Computer Systems,2016

3. Sajjad Ahmed Knut Hinkelmann and Flavio Corradini. 2022. Combining machine learning with knowledge engineering to detect fake news in social networks-a survey. arXiv:2201.08032.

4. Graph-based deep learning for medical diagnosis and analysis: Past, present and future;Ahmedt-Aristizabal David;Sensors,2021

5. Towards quantum computing based community detection;Akbar Sana;Computer Science Review,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3