DyPyBench: A Benchmark of Executable Python Software

Author:

Bouzenia Islem1ORCID,Krishan Bajaj Piyush1ORCID,Pradel Michael1ORCID

Affiliation:

1. University of Stuttgart, Stuttgart, Germany

Abstract

Python has emerged as one of the most popular programming languages, extensively utilized in domains such as machine learning, data analysis, and web applications. Python’s dynamic nature and extensive usage make it an attractive candidate for dynamic program analysis. However, unlike for other popular languages, there currently is no comprehensive benchmark suite of executable Python projects, which hinders the development of dynamic analyses. This work addresses this gap by presenting DyPyBench, the first benchmark of Python projects that is large-scale, diverse, ready-to-run (i.e., with fully configured and prepared test suites), and ready- to-analyze (by integrating with the DynaPyt dynamic analysis framework). The benchmark encompasses 50 popular open-source projects from various application domains, with a total of 681k lines of Python code, and 30k test cases. DyPyBench enables various applications in testing and dynamic analysis, of which we explore three in this work: (i) Gathering dynamic call graphs and empirically comparing them to statically computed call graphs, which exposes and quantifies limitations of existing call graph construction techniques for Python. (ii) Using DyPyBench to build a training data set for LExecutor, a neural model that learns to predict values that otherwise would be missing at runtime. (iii) Using dynamically gathered execution traces to mine API usage specifications, which establishes a baseline for future work on specification mining for Python. We envision DyPyBench to provide a basis for other dynamic analyses and for studying the runtime behavior of Python code.

Funder

European Research Council

Publisher

Association for Computing Machinery (ACM)

Reference70 articles.

1. DDUO: General-Purpose Dynamic Analysis for Differential Privacy

2. Karim Ali, Marianna Rapoport, Ondřej Lhoták, Julian Dolby, and Frank Tip. 2014. Constructing call graphs of Scala programs. In European Conference on Object-Oriented Programming. 54–79.

3. Miltiadis Allamanis, Earl T. Barr, Soline Ducousso, and Zheng Gao. 2020. Typilus: Neural Type Hints. In PLDI.

4. Glenn Ammons, Rastislav Bodík, and James R. Larus. 2002. Mining specifications. In Symposium on Principles of Programming Languages (POPL). ACM, 4–16.

5. Jong-hoon (David) An Avik Chaudhuri Jeffrey S. Foster and Michael Hicks. 2011. Dynamic inference of static types for Ruby.. In POPL. 459–472.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3