Musical Motif Discovery from Non-Musical Inspiration Sources

Author:

Johnson Daniel1,Ventura Dan1

Affiliation:

1. Computer Science Department, Brigham Young University Provo, UT 84602 USA

Abstract

Many music composition algorithms attempt to compose music in a particular style. The resulting music is often impressive and indistinguishable from the style of the training data, but it tends to lack significant innovation. In an effort to increase innovation in the selection of pitches and note durations, we present a system that discovers musical motifs by coupling machine-learning techniques with an inspirational component. Unlike many generative models, the inspirational component allows the composition process to originate outside of what is learned from the training data. Candidate motifs are extracted from non-musical data such as audio, images, and sleep signals. Machine-learning algorithms select the motifs that most resemble the training data. We find that the inspirational motif discovery process is more efficient than random generation. We also extract motifs from real music scores, identify themes in the piece according to a theme database, and measure the probability of discovering thematic motifs verses non-thematic motifs. We examine the information content of the motifs by comparing the entropy of the discovered motifs, candidate motifs, and training data. We measure innovation by comparing the probability of the training data and the probability of the discovered motifs given the model.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications

Reference20 articles.

1. Siglind Bruhn. 1997. Images and Ideas in Modern French Piano Music: The Extra-musical Subtext in Piano Works by Ravel Debussy and Messiaen. Vol. 6. Pendragon Press. Siglind Bruhn. 1997. Images and Ideas in Modern French Piano Music: The Extra-musical Subtext in Piano Works by Ravel Debussy and Messiaen. Vol. 6. Pendragon Press.

2. Generation of Musical Sequences with Genetic Techniques

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3