A Machine Learning Approach to Improving Timing Consistency between Global Route and Detailed Route

Author:

Chhabria Vidya A.1ORCID,Jiang Wenjing2ORCID,Kahng Andrew B.3ORCID,Sapatnekar Sachin S.2ORCID

Affiliation:

1. Arizona State University, USA

2. University of Minnesota, USA

3. University of California—San Diego, USA

Abstract

Due to the unavailability of routing information in design stages prior to detailed routing (DR), the tasks of timing prediction and optimization pose major challenges. Inaccurate timing prediction wastes design effort, hurts circuit performance, and may lead to design failure. This work focuses on timing prediction after clock tree synthesis and placement legalization, which is the earliest opportunity to time and optimize a “complete” netlist. The article first documents that having “oracle knowledge” of the final post-DR parasitics enables post-global routing (GR) optimization to produce improved final timing outcomes. To bridge the gap between GR-based parasitic and timing estimation and post-DR results during post-GR optimization , machine learning (ML)-based models are proposed, including the use of features for macro blockages for accurate predictions for designs with macros. Based on a set of experimental evaluations, it is demonstrated that these models show higher accuracy than GR-based timing estimation. When used during post-GR optimization, the ML-based models show demonstrable improvements in post-DR circuit performance. The methodology is applied to two different tool flows—OpenROAD and a commercial tool flow—and results on an open-source 45nm bulk and a commercial 12nm FinFET enablement show improvements in post-DR timing slack metrics without increasing congestion. The models are demonstrated to be generalizable to designs generated under different clock period constraints and are robust to training data with small levels of noise.

Funder

DARPA

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AIP-SEM: An Efficient ML-Boost In-Place Soft Error Mitigation Method for SRAM-Based FPGA;2024 2nd International Symposium of Electronics Design Automation (ISEDA);2024-05-10

2. OpenROAD and CircuitOps: Infrastructure for ML EDA Research and Education;2024 IEEE 42nd VLSI Test Symposium (VTS);2024-04-22

3. Invited Paper: The Inevitability of AI Infusion Into Design Closure and Signoff;2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD);2023-10-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3