Indicator-based Multi-objective Evolutionary Algorithms

Author:

Falcón-Cardona Jesús Guillermo1ORCID,Coello Carlos A. Coello2

Affiliation:

1. CINVESTAV-IPN, Department of Computer Science, Mexico City, Mexico

2. UAM-Azcapotzalco, Mexico City, Mexico

Abstract

For over 25 years, most multi-objective evolutionary algorithms (MOEAs) have adopted selection criteria based on Pareto dominance. However, the performance of Pareto-based MOEAs quickly degrades when solving multi-objective optimization problems (MOPs) having four or more objective functions (the so-called many-objective optimization problems), mainly because of the loss of selection pressure. Consequently, in recent years, MOEAs have been coupled with indicator-based selection mechanisms in furtherance of increasing the selection pressure so that they can properly solve many-objective optimization problems. Several research efforts have been conducted since 2003 regarding the design of the so-called indicator-based (IB) MOEAs. In this article, we present a comprehensive survey of IB-MOEAs for continuous search spaces since their origins up to the current state-of-the-art approaches. We propose a taxonomy that classifies IB-mechanisms into two main categories: (1) IB-Selection (which is divided into IB-Environmental Selection, IB-Density Estimation, and IB-Archiving) and (2) IB-Mating Selection. Each of these classes is discussed in detail in this article, emphasizing the advantages and drawbacks of the selection mechanisms. In the final part, we provide some possible paths for future research.

Funder

CONACyT to pursue graduate studies in computer science at CINVESTAVIPN

CONACyT

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Cited by 119 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3