Towards Position-Independent Sensing for Gesture Recognition with Wi-Fi

Author:

Gao Ruiyang1,Zhang Mi2,Zhang Jie1,Li Yang1,Yi Enze1,Wu Dan1,Wang Leye1,Zhang Daqing3

Affiliation:

1. School of Electronics Engineering and Computer Science, Peking University, Beijing, China

2. Michigan State University, Michigan, USA

3. Key Laboratory of High Confidence Software Technologies (Ministry of Education), School of Electronics Engineering and Computer Science, Peking University, Beijing, China Telecom SudParis, Institut Polytechnique de Paris, Evry, France

Abstract

Past decades have witnessed the extension of the Wi-Fi signals as a useful tool sensing human activities. One common assumption behind it is that there is a one-to-one mapping between human activities and Wi-Fi received signal patterns. However, this assumption does not hold when the user conducts activities in different locations and orientations. Actually, the received signal patterns of the same activity would become inconsistent when the relative location and orientation of the user with respect to transceivers change, leading to unstable sensing performance. This problem is known as the position-dependent problem, hindering the actual deployment of Wi-Fi-based sensing applications. In this paper, to tackle this fundamental problem, we develop a new position-independent sensing strategy and use gesture recognition as an application example to demonstrate its effectiveness. The key idea is to shift our observation from the traditional transceiver view to the hand-oriented view, and extract features that are irrespective of position-specific factors. Following the strategy, we design a position-independent feature, denoted as Motion Navigation Primitive(MNP). MNP captures the pattern of moving direction changes of the hand, which shares consistent patterns when the user performs the same gesture with different position-specific factors. By analyzing the pattern of MNP, we convert gestures into sequences of strokes (e.g, line, arc and corner) which makes them easy to be recognized. We build a prototype WiFi gesture recognition system, i.e., WiGesture to validate the effectiveness of the proposed strategy. Experiments show that our system can outperform the start-of-arts significantly in different settings. Given its novelty and superiority, we believe the proposed method symbolizes a major step towards gesture recognition and would inspire other solutions to position-independent activity recognition in the future.

Funder

PKU-NTU collaboration Project

NSFC A3 Project

PKU-Baidu Funded Project

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3