Continuous Influence Maximization

Author:

Yang Yu1,Mao Xiangbo2,Pei Jian3,He Xiaofei4

Affiliation:

1. City University of Hong Kong, Kowloon, Hong Kong, China

2. Simon Fraser University 8 Zhejiang University, Burnaby, Canada

3. Simon Fraser University, Burnaby, Canada

4. Zhejiang University, Hangzhou, Zhejiang, China

Abstract

Imagine we are introducing a new product through a social network, where we know for each user in the network the function of purchase probability with respect to discount. Then, what discounts should we offer to those social network users so that, under a predefined budget, the adoption of the product is maximized in expectation? Although influence maximization has been extensively explored, this appealing practical problem still cannot be answered by the existing influence maximization methods. In this article, we tackle the problem systematically. We formulate the general continuous influence maximization problem, investigate the essential properties, and develop a general coordinate descent algorithmic framework as well as the engineering techniques for practical implementation. Our investigation does not assume any specific influence model and thus is general and principled. At the same time, using the most popularly adopted triggering model as a concrete example, we demonstrate that more efficient methods are feasible under specific influence models. Our extensive empirical study on four benchmark real-world networks with synthesized purchase probability curves clearly illustrates that continuous influence maximization can improve influence spread significantly with very moderate extra running time comparing to the classical influence maximization methods.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3