Unsupervised Similarity Learning through Rank Correlation and kNN Sets

Author:

Valem Lucas Pascotti1,Oliveira Carlos Renan De1,Pedronette Daniel Carlos Guimarães1,Almeida Jurandy2ORCID

Affiliation:

1. Department of Statistics, Applied Mathematics and Computing, São Paulo State University -- UNESP, Brazil

2. Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo -- UNIFESP, Brazil

Abstract

The increasing amount of multimedia data collections available today evinces the pressing need for methods capable of indexing and retrieving this content. Despite the continuous advances in multimedia features and representation models, to establish an effective measure for comparing different multimedia objects still remains a challenging task. While supervised and semi-supervised techniques made relevant advances on similarity learning tasks, scenarios where labeled data are non-existent require different strategies. In such situations, unsupervised learning has been established as a promising solution, capable of considering the contextual information and the dataset structure for computing new similarity/dissimilarity measures. This article extends a recent unsupervised learning algorithm that uses an iterative re-ranking strategy to take advantage of different k -Nearest Neighbors (kNN) sets and rank correlation measures. Two novel approaches are proposed for computing the kNN sets and their corresponding top- k lists. The proposed approaches were validated in conjunction with various rank correlation measures, yielding superior effectiveness results in comparison with previous works. In addition, we also evaluate the ability of the method in considering different multimedia objects, conducting an extensive experimental evaluation on various image and video datasets.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3