Embracing Collisions to Increase Fidelity of Sensing Systems with COTS Tags

Author:

Xu Jiaqi1,Sun Wei1,Srinivasan Kannan1

Affiliation:

1. The Ohio State University, USA

Abstract

RFID techniques have been extensively used in sensing systems due to their low cost. However, limited by the structural simplicity, collision is one key issue which is inevitable in RFID systems, thus limiting the accuracy and scalability of such sensing systems. Existing anti-collision techniques try to enable parallel decoding without sensing based applications in mind, which can not operate on COTS RFID systems. To address the issue, we propose COFFEE, which enables parallel channel estimation of COTS passive tags by harnessing the collision. We revisit the physical layer design of current standard. By exploiting the characteristics of low sampling rate and channel diversity of RFID tags, we separate the collided data and extract the channels of the collided tags. We also propose a tag identification algorithm which explores history channel information and identify the tags without decoding. COFFEE is compatible with current COTS RFID standards which can be applied to all RFID-based sensing systems without any modification on tag side. To evaluate the real world performance of our system, we build a prototype and conduct extensive experiments. The experimental results show that we can achieve up to 7.33x median time resolution gain for the best case and 3.42x median gain on average.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Reference42 articles.

1. RFID Backscattering in Long-Range Scenarios

2. RFGo

3. RF-Copybook

4. LungTrack: Towards contactless and zero dead-zone respiration monitoring with commodity RFIDs;Chen Lili;Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learning-Based Radio Fingerprinting for RFID Secure Authentication Scheme;2022 IEEE Conference on Communications and Network Security (CNS);2022-10-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3