Efficient identification of uncongested internet links for topology downscaling

Author:

Papadopoulos Fragkiskos1,Psounis Konstantinos1

Affiliation:

1. University of Southern California

Abstract

It has been recently suggested that uncongested links could be completely ignored when evaluating Internet's performance. In particular, based on the observation that only the congested links along the path of each flow introduce sizable queueing delays and dependencies among flows, it has been shown that one can infer the performance of the larger Internet by creating and observing a suitably scaled-down replica, consisting of the congested links only. Given that the majority of Internet links are uncongested, it has been demonstrated that this approach can be used to greatly simplify and expedite performance prediction. However, an important open problem, directly related to the practicability of such an approach, is whether there exist efficient and scalable ways for identifying uncongested links, in large and complex Internet-like networks. Of course, such a question is not only very important for scaling down Internet's topology, but also in many other contexts, e.g. such as in traffic engineering and capacity planning. In this paper we present simple rules that can be used to efficiently identify uncongested Internet links. In particular, we first identify scenarios under which one can easily deduce whether a link is uncongested by inspecting the network topology. Then, we identify scenarios in which this is not possible, and propose an efficient methodology, based on the large deviations theory and flow-level statistics, to approximate the queue length distribution,and in turn, to deduce the congestion level of a link. We also demonstrate how simple commonly used metrics, such as the link utilization, can be quite misleading in classifying an Internet link.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Software

Reference44 articles.

1. Packet network simulation: speedup and accuracy versus timing granularity

2. Sizing router buffers

3. A flow-based model for internet backbone traffic

4. Modeling internet backbone traffic at the flow level

5. Intermapper web server. https://intermapper.engineering.cenic.org Intermapper web server. https://intermapper.engineering.cenic.org

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3