A Meta-Learning Framework for Tuning Parameters of Protection Mechanisms in Trustworthy Federated Learning

Author:

Zhang Xiaojin1ORCID,Kang Yan2ORCID,Fan Lixin2ORCID,Chen Kai3ORCID,Yang Qiang4ORCID

Affiliation:

1. Huazhong University of Science and Technology, Wuhan, China

2. WeBank, shenzhen, China

3. Hong Kong University of Science and Technology, Clear Water Bay Hong Kong

4. WeBank and Hong Kong University of Science and Technology, Hong Kong, Hong Kong

Abstract

Trustworthy federated learning typically leverages protection mechanisms to guarantee privacy. However, protection mechanisms inevitably introduce utility loss or efficiency reduction while protecting data privacy. Therefore, protection mechanisms and their parameters should be carefully chosen to strike an optimal tradeoff among privacy leakage , utility loss , and efficiency reduction . To this end, federated learning practitioners need tools to measure the three factors and optimize the tradeoff between them to choose the protection mechanism that is most appropriate to the application at hand. Motivated by this requirement, we propose a framework that (1) formulates trustworthy federated learning as a problem of finding a protection mechanism to optimize the tradeoff among privacy leakage, utility loss, and efficiency reduction and (2) formally defines bounded measurements of the three factors. We then propose a meta-learning algorithm to approximate this optimization problem and find optimal protection parameters for representative protection mechanisms, including randomization, homomorphic encryption, secret sharing, and compression. We further design estimation algorithms to quantify these found optimal protection parameters in a practical horizontal federated learning setting and provide a theoretical analysis of the estimation error.

Funder

National Science and Technology Major Project

Publisher

Association for Computing Machinery (ACM)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Game-theoretic Framework for Privacy-preserving Federated Learning;ACM Transactions on Intelligent Systems and Technology;2024-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3