Model-Based Count Series Clustering for Bike Sharing System Usage Mining: A Case Study with the Vélib’ System of Paris

Author:

Etienne Côme1,Latifa Oukhellou1

Affiliation:

1. Université Paris-Est, France

Abstract

Today, more and more bicycle sharing systems (BSSs) are being introduced in big cities. These transportation systems generate sizable transportation data, the mining of which can reveal the underlying urban phenomenon linked to city dynamics. This article presents a statistical model to automatically analyze the trip data of a bike sharing system. The proposed solution partitions (i.e., clusters) the stations according to their usage profiles. To do so, count series describing the stations’s usage through departure/arrival counts per hour throughout the day are built and analyzed. The model for processing these count series is based on Poisson mixtures and introduces a station scaling factor that handles the differences between the stations’s global usage. Differences between weekday and weekend usage are also taken into account. This model identifies the latent factors that shape the geography of trips, and the results may thus offer insights into the relationships between station neighborhood type (its amenities, its demographics, etc.) and the generated mobility patterns. In other words, the proposed method brings to light the different functions in different areas that induce specific patterns in BSS data. These potentials are demonstrated through an in-depth analysis of the results obtained on the Paris Vélib’ large-scale bike sharing system.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 123 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3