Affiliation:
1. University of North Carolina at Chapel Hill
2. Aalto University
Abstract
We present an interactive sound propagation algorithm that can compute high orders of specular and diffuse reflections as well as edge diffractions in response to moving sound sources and a moving listener. Our formulation is based on a precomputed acoustic transfer operator, which we compactly represent using the Karhunen-Loeve transform. At runtime, we use a two-pass approach that combines acoustic radiance transfer with interactive ray tracing to compute early reflections as well as higher-order reflections and late reverberation. The overall approach allows accuracy to be traded off for improved performance at runtime, and has a low memory overhead. We demonstrate the performance of our algorithm on different scenarios, including an integration of our algorithm with Valve's Source game engine.
Funder
Army Research Office
National Science Foundation
RDECOM
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Graphics and Computer-Aided Design
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献