A Novel Hybrid Approach for Multi-Dimensional Data Anonymization for Apache Spark

Author:

Bazai Sibghat Ullah1,Jang-Jaccard Julian1ORCID,Alavizadeh Hooman1ORCID

Affiliation:

1. Massey University, Auckland, New Zealand

Abstract

Multi-dimensional data anonymization approaches (e.g., Mondrian) ensure more fine-grained data privacy by providing a different anonymization strategy applied for each attribute. Many variations of multi-dimensional anonymization have been implemented on different distributed processing platforms (e.g., MapReduce, Spark) to take advantage of their scalability and parallelism supports. According to our critical analysis on overheads, either existing iteration-based or recursion-based approaches do not provide effective mechanisms for creating the optimal number of and relative size of resilient distributed datasets (RDDs), thus heavily suffer from performance overheads. To solve this issue, we propose a novel hybrid approach for effectively implementing a multi-dimensional data anonymization strategy (e.g., Mondrian) that is scalable and provides high-performance. Our hybrid approach provides a mechanism to create far fewer RDDs and smaller size partitions attached to each RDD than existing approaches. This optimal RDD creation and operations approach is critical for many multi-dimensional data anonymization applications that create tremendous execution complexity. The new mechanism in our proposed hybrid approach can dramatically reduce the critical overheads involved in re-computation cost, shuffle operations, message exchange, and cache management.

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,General Computer Science

Reference50 articles.

1. IPUMS International. (2007). Retrieved 25 Sept 2021 from https://international.ipums.org/international/.

2. Sensitivity-Based Anonymization of Big Data

3. DI-Mondrian: Distributed improved Mondrian for satisfaction of the L-diversity privacy model using Apache Spark

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3