Compositional parallel programming languages

Author:

Foster Ian1

Affiliation:

1. Argonne National Lab, Argonne, IL

Abstract

In task-parallel programs, diversee activities can take place concurrently, and communication and synchronization patterns are complex and not easily predictable. Previous work has identified compositionality as an important design principle for task-parallel programs. In this article, we discuss alternative approaches to the realization of this principle, which holds that properties of program components should be preserved when those co ponents are composed in parallel with other program components. We review two programming languages, Strand and Program Composition Notation, that support compositionality via a small number of simple concepts, namely, monotone operations on shared opbects, a uniform addressing mechanism, and parallel composition. Both languages have been used extensively for large-scale application development, allowing us to provide an informed assessment of both their strengths and their weaknesses. We observe that while compositionality simplifies development of complex applications, the use of specialized languages hinders reuse of existing code and tools and the specification of domain decomposition strategies. This suggests an alternative approach based on small extensions to existing sequential languages. We conclude the article with a discussion of two languages that realized this strategy.

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Reference40 articles.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling Game Mechanics with Ceptre;IEEE Transactions on Games;2023

2. Multicore scheduling for lightweight communicating processes;Science of Computer Programming;2012-06

3. Parallel Programming;2010

4. Parallel Programming Models;Parallel Programming;2009-12-04

5. Multicore Scheduling for Lightweight Communicating Processes;Lecture Notes in Computer Science;2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3