Synchronous programming in audio processing

Author:

Barkati Karim1,Jouvelot Pierre1

Affiliation:

1. MINES ParisTech, France

Abstract

The adequacy of a programming language to a given software project or application domain is often considered a key factor of success in software development and engineering, even though little theoretical or practical information is readily available to help make an informed decision. In this article, we address a particular version of this issue by comparing the adequacy of general-purpose synchronous programming languages to more Domain-Specific Languages (DSLs) in the field of computer music. More precisely, we implemented and tested the same lookup table oscillator example program, one of the most classical algorithms for sound synthesis, using a selection of significant synchronous programming languages, half of which designed as specific music languages—Csound, Pure Data, SuperCollider, ChucK, Faust—and the other half being general synchronous formalisms—Signal, Lustre, Esterel, Lucid Synchrone and C with the OpenMP Stream Extension (Matlab/Octave is used for the initial specification). The advantages of these two approaches are discussed, providing insights to language designers and possibly software developers of both communities regarding programming languages design for the audio domain.

Funder

Agence Nationale de la Recherche

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The w-calculus: a synchronous framework for the verified modelling of digital signal processing algorithms;Proceedings of the 9th ACM SIGPLAN International Workshop on Functional Art, Music, Modelling, and Design;2021-08-22

2. CÉU-MEDIA;Proceedings of the 22nd Brazilian Symposium on Multimedia and the Web;2016-11-08

3. Signal Rate Inference for Multidimensional Faust;Proceedings of the 28th Symposium on the Implementation and Application of Functional Programming Languages - IFL 2016;2016

4. Faustine: A Vector Faust Interpreter Test Bed for Multimedia Signal Processing;Functional and Logic Programming;2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3