A decoupled non-SSA global register allocation using bipartite liveness graphs

Author:

Barik Rajkishore1,Zhao Jisheng2,Sarkar Vivek2

Affiliation:

1. Intel Labs, CA, USA

2. Rice University, TX, USA

Abstract

Register allocation is an essential optimization for all compilers. A number of sophisticated register allocation algorithms have been developed over the years. The two fundamental classes of register allocation algorithms used in modern compilers are based on Graph Coloring (GC) and Linear Scan (LS). However, these two algorithms have fundamental limitations in terms of precision. For example, the key data structure used in GC-based algorithms, the interference graph, lacks information on the program points at which two variables may interfere. The LS-based algorithms make local decisions regarding spilling, and thereby trade off global optimization for reduced compile-time and space overheads. Recently, researchers have proposed Static Single Assignment (SSA)-based decoupled register allocation algorithms that exploit the live-range split points of the SSA representation to optimally solve the spilling problem. However, SSA-based register allocation often requires extra complexity in repairing register assignments during SSA elimination and in addressing architectural constraints such as aliasing and ABI encoding; this extra overhead can be prohibitively expensive in dynamic compilation contexts. This article proposes a decoupled non-SSA--based global register allocation algorithm for dynamic compilation. It addresses the limitations in current algorithms by introducing a Bipartite Liveness Graph (BLG)-based register allocation algorithm that models the spilling phase as an optimization problem on the BLG itself and the assignment phase as a separate optimization problem. Advanced register allocation optimizations such as move coalescing, live-range splitting, and register class handling are also performed along with the spilling and assignment phases. In the presence of register classes, we propose a bucket-based greedy heuristic for assignment that strikes a balance between spill-cost and register class constraints. We present experimental evaluation of our BLG-based register allocation algorithm and compare it with production-quality register allocators in Jikes RVM and LLVM.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improving on Linear Scan Register Allocation;International Journal of Automation and Computing;2018-02-28

2. Bytewise Register Allocation;Proceedings of the 18th International Workshop on Software and Compilers for Embedded Systems;2015-06

3. Using the SSA-Form in a Code Generator;Lecture Notes in Computer Science;2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3