Towards memory-efficient processing-in-memory architecture for convolutional neural networks

Author:

Wang Yi1,Zhang Mingxu2,Yang Jing3

Affiliation:

1. Shenzhen University, China

2. Shenzhen University, China / Institute of Computing Technology at Chinese Academy of Sciences, China

3. Harbin Institute of Technology, China

Abstract

Convolutional neural networks (CNNs) are widely adopted in artificial intelligent systems. In contrast to conventional computing centric applications, the computational and memory resources of CNN applications are mixed together in the network weights. This incurs a significant amount of data movement, especially for highdimensional convolutions. Although recent embedded 3D-stacked Processing-in-Memory (PIM) architecture alleviates this memory bottleneck to provide fast near-data processing, memory is still a limiting factor of the entire system. An unsolved key challenge is how to efficiently allocate convolutions to 3D-stacked PIM to combine the advantages of both neural and computational processing. This paper presents Memolution, a compiler-based memory efficient data allocation strategy for convolutional neural networks on PIM architecture. Memolution offers thread-level parallelism that can fully exploit the computational power of PIM architecture. The objective is to capture the characteristics of neural network applications and present a hardware-independent design to transparently allocate CNN applications onto the underlining hardware resources provided by PIM. We demonstrate the viability of the proposed technique using a variety of realistic convolutional neural network applications. Our extensive evaluations show that, Memolution significantly improves performance and the cache utilization compared to the baseline scheme.

Funder

Natural Science Foundation of Guangdong Province

Natural Science Foundation of SZU

National Natural Science Foundation of China

State Key Laboratory of Computer Architecture, Institute of Computing Technology,Chinese Academy of Sciences

Shenzhen Science and Technology Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3