Integrating task scheduling and cache locking for multicore real-time embedded systems

Author:

Zheng Wenguang1,Wu Hui2,Nie Chuanyao2

Affiliation:

1. Tianjin University of Technology, China

2. UNSW, Australia

Abstract

Modern embedded processors provide hardware support for cache locking, a mechanism used to facilitate the WCET (Worst-Case Execution Time) calculation of a task. We investigate the problem of integrating task scheduling and cache locking for a set of preemptible tasks with individual release times and deadlines on a multi-core processor with two-level caches. We propose a novel integrated approach that schedules the task set and allocates the locked cache contents of each task to the local caches (L1 caches) and the level-two cache (L2 cache). Our approach consists of three major components, the task scheduler, the L1 cache allocator, and the L2 cache allocator. The task scheduler aims at minimizing the number of task preemptions. The L1 cache allocator converts the interference graph of all the tasks scheduled on each core into a DAG by considering the preemptions between tasks and allocates the L1 cache space to each task. The L2 cache allocator converts the interference graph of all the tasks into a DAG by using a k-longest-path-based graph orientation algorithm and allocates the L2 cache space to each task. Both cache allocators significantly improve the cache utilization for all the caches due to the efficient use of the interference graphs of tasks. We have implemented our approach and compared it with the extended version of the preemption tree-based approach and the static analysis approach without cache locking by using a set of benchmarks from the MRTC WCET benchmark suite and SNU real-time benchmarks. Compared to the extended version of the preemption tree-based approach, the maximum WCRT (Worst Case Response Time) improvement of our approach is 15%. Compared to the static analysis approach, the maximum WCRT improvement of our approach is 37%.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference25 articles.

1. Snu real-time benchmarks. http://archi.snu.ac.kr/realtime/ benchmark/. Snu real-time benchmarks. http://archi.snu.ac.kr/realtime/ benchmark/.

2. The SimpleScalar tool set, version 2.0

3. DYNAMIC USE OF LOCKING CACHES IN MULTITASK, PREEMPTIVE REAL-TIME SYSTEMS

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3