TASC

Author:

Tian Yonghong1,Qian Mengren1,Huang Tiejun1

Affiliation:

1. Peking University, Beijing China

Abstract

How to precisely and efficiently detect near-duplicate copies with complicated audiovisual transformations from a large-scale video database is a challenging task. To cope with this challenge, this article proposes a transformation-aware soft cascading (TASC) approach for multimodal video copy detection. Basically, our approach divides query videos into some categories and then for each category designs a transformation-aware chain to organize several detectors in a cascade structure. In each chain, efficient but simple detectors are placed in the forepart, whereas effective but complex detectors are located in the rear. To judge whether two videos are near-duplicates, a Detection-on-Copy-Units mechanism is introduced in the TASC, which makes the decision of copy detection depending on the similarity between their most similar fractions, called copy units (CUs), rather than the video-level similarity. Following this, we propose a CU search algorithm to find a pair of CUs from two videos and a CU-based localization algorithm to find the precise locations of their copy segments that are with the asserted CUs as the center. Moreover, to address the problem that the copies and noncopies are possibly linearly inseparable in the feature space, the TASC also introduces a flexible strategy, called soft decision boundary , to replace the single threshold strategy for each detector. Its basic idea is to automatically learn two thresholds for each detector to examine the easy-to-judge copies and noncopies, respectively, and meanwhile to train a nonlinear classifier to further check those hard-to-judge ones. Extensive experiments on three benchmark datasets showed that the TASC can achieve excellent copy detection accuracy and localization precision with a very high processing efficiency.

Funder

National Basic Research Program of China under contract 2015CB351806

National Natural Science Foundation of China under contracts 61035001 and 61390515

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Finding Near-Duplicate Videos in Large-Scale Collections;Video Verification in the Fake News Era;2019

2. Multimodal Video-to-Near-Scene Annotation;IEEE Transactions on Multimedia;2017-02

3. An image-based near-duplicate video retrieval and localization using improved Edit distance;Multimedia Tools and Applications;2016-12-02

4. Pattern-Based Near-Duplicate Video Retrieval and Localization on Web-Scale Videos;IEEE Transactions on Multimedia;2015-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3