On Discovery of Spatiotemporal Influence-Based Moving Clusters

Author:

Patel Dhaval1

Affiliation:

1. Indian Institute of Technology, Roorkee, Uttarakhand, India

Abstract

A moving object cluster is a set of objects that move close to each other for a long time interval. Existing works have utilized object trajectories to discover moving object clusters efficiently. In this article, we define a spatiotemporal influence-based moving cluster that captures spatiotemporal influence spread over a set of spatial objects. A spatiotemporal influence-based moving cluster is a sequence of spatial clusters, where each cluster is a set of nearby objects, such that each object in a cluster influences at least one object in the next immediate cluster and is also influenced by an object from the immediate preceding cluster. Real-life examples of spatiotemporal influence-based moving clusters include diffusion of infectious diseases and spread of innovative ideas. We study the discovery of spatiotemporal influence-based moving clusters in a database of spatiotemporal events. While the search space for discovering all spatiotemporal influence-based moving clusters is prohibitively huge, we design a method, STIMer, to efficiently retrieve the maximal answer. The algorithm STIMer adopts a top-down recursive refinement method to generate the maximal spatiotemporal influence-based moving clusters directly. Empirical studies on the real data as well as large synthetic data demonstrate the effectiveness and efficiency of our method.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Reference39 articles.

1. D. Agarwal A. McGregor J. Phillips S. Venky and Z. Zhu. 2006. Spatial scan statistics: Approximations and performance study. In SIGKDD. 24--33. 10.1145/1150402.1150410 D. Agarwal A. McGregor J. Phillips S. Venky and Z. Zhu. 2006. Spatial scan statistics: Approximations and performance study. In SIGKDD. 24--33. 10.1145/1150402.1150410

2. Mining multi-object spatial-temporal movement patterns

3. ST-DBSCAN: An algorithm for clustering spatial–temporal data

4. X. Caon G. Cong and C. Jensen. 2010. Mining significant semantic locations from GPS data. In VLDB. 320--332. X. Caon G. Cong and C. Jensen. 2010. Mining significant semantic locations from GPS data. In VLDB. 320--332.

5. M. Celik S. Shekar J. Rogers J. Shine and J. Kang. 2008. Mining at most top-k mixed-drove spatio-temporal co-occurrence patterns: A summary of results. In SSTD. 187--192. M. Celik S. Shekar J. Rogers J. Shine and J. Kang. 2008. Mining at most top-k mixed-drove spatio-temporal co-occurrence patterns: A summary of results. In SSTD. 187--192.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Discovering Geographical Flock Patterns of CO2 Emissions in China Using Trajectory Mining Techniques;International Journal of Environmental Research and Public Health;2023-02-27

2. Massively Parallel Discovery of Loosely Moving Congestion Patterns from Trajectory Data;ISPRS International Journal of Geo-Information;2021-11-17

3. Joint Structured Sparsity Regularized Multiview Dimension Reduction for Video-Based Facial Expression Recognition;ACM Transactions on Intelligent Systems and Technology;2017-01-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3