1. Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. 2019. Implicit Regularization in Deep Matrix Factorization. In Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8--14, 2019, Vancouver, BC, Canada,, Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d'Alché-Buc, Emily B. Fox, and Roman Garnett (Eds.). 7411--7422. https://proceedings.neurips.cc/paper/2019/hash/c0c783b5fc0d7d808f1d14a6e9c8280d-Abstract.html
2. Philip Bachman, R. Devon Hjelm, and William Buchwalter. 2019. Learning Representations by Maximizing Mutual Information Across Views. In Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8--14, 2019, Vancouver, BC, Canada, Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d'Alché-Buc, Emily B. Fox, and Roman Garnett (Eds.). 15509--15519. https://proceedings.neurips.cc/paper/2019/hash/ddf354219aac374f1d40b7e760ee5bb7-Abstract.html
3. Adrien Bardes, Jean Ponce, and Yann LeCun. 2022. VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning. In The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25--29, 2022. OpenReview.net. https://openreview.net/forum?id=xm6YD62D1Ub
4. Graph Barlow Twins: A self-supervised representation learning framework for graphs
5. Aleksandar Bojchevski and Stephan Günnemann. 2018. Deep Gaussian Embedding of Graphs: Unsupervised Inductive Learning via Ranking. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net. https://openreview.net/forum?id=r1ZdKJ-0W