OpenFedLLM: Training Large Language Models on Decentralized Private Data via Federated Learning

Author:

Ye Rui1ORCID,Wang Wenhao2ORCID,Chai Jingyi1ORCID,Li Dihan3ORCID,Li Zexi2ORCID,Xu Yinda1ORCID,Du Yaxin1ORCID,Wang Yanfeng4ORCID,Chen Siheng4ORCID

Affiliation:

1. Shanghai Jiao Tong University, Shanghai, China

2. Zhejiang University, Zhejiang, China

3. University of Southern California, Los Angeles, USA

4. Shanghai Jiao Tong University & Shanghai AI Laboratory, Shanghai, China

Funder

NSFC

Science and Technology Commission of Shanghai Municipality

National Key R&D Program of China

Science and Technology Commission of Shanghai Municipal

Publisher

ACM

Reference95 articles.

1. Yuntao Bai Andy Jones Kamal Ndousse Amanda Askell Anna Chen Nova DasSarma Dawn Drain Stanislav Fort Deep Ganguli Tom Henighan et al. 2022. Training a helpful and harmless assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862 (2022).

2. Yuntao Bai Saurav Kadavath Sandipan Kundu Amanda Askell Jackson Kernion Andy Jones Anna Chen Anna Goldie Azalia Mirhoseini Cameron McKinnon et al. 2022. Constitutional ai: Harmlessness from ai feedback. arXiv preprint arXiv:2212.08073 (2022).

3. Language models are few-shot learners;Brown Tom;NIPS,2020

4. Chaochao Chen, Xiaohua Feng, Jun Zhou, Jianwei Yin, and Xiaolin Zheng. 2023. Federated large language model: A position paper. arXiv preprint arXiv:2307.08925 (2023).

5. Mark Chen Jerry Tworek Heewoo Jun Qiming Yuan Henrique Ponde de Oliveira Pinto Jared Kaplan Harri Edwards Yuri Burda Nicholas Joseph Greg Brockman Alex Ray Raul Puri Gretchen Krueger Michael Petrov Heidy Khlaaf Girish Sastry Pamela Mishkin Brooke Chan Scott Gray Nick Ryder Mikhail Pavlov Alethea Power Lukasz Kaiser Mohammad Bavarian Clemens Winter Philippe Tillet Felipe Petroski Such Dave Cummings Matthias Plappert Fotios Chantzis Elizabeth Barnes Ariel Herbert-Voss William Hebgen Guss Alex Nichol Alex Paino Nikolas Tezak Jie Tang Igor Babuschkin Suchir Balaji Shantanu Jain William Saunders Christopher Hesse Andrew N. Carr Jan Leike Josh Achiam Vedant Misra Evan Morikawa Alec Radford Matthew Knight Miles Brundage Mira Murati Katie Mayer Peter Welinder Bob McGrew Dario Amodei Sam McCandlish Ilya Sutskever and Wojciech Zaremba. 2021. Evaluating Large Language Models Trained on Code. arxiv: 2107.03374 [cs.LG]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3