Affiliation:
1. IBM Research - Zurich, Räschlikon, Switzerland
2. ABB Corporate Research - Baden, Switzerland
Abstract
The emergence of cloud-based storage services is opening up new avenues in data exchange and data dissemination. This has amplified the interest in right-protection mechanisms to establish ownership in the event of data leakage. Current right-protection technologies, however, rarely provide strong guarantees on dataset utility after the protection process. This work presents techniques that explicitly address this topic and provably preserve the outcome of certain mining operations. In particular, we take special care to guarantee that the outcome of hierarchical clustering operations remains the same before and after right protection. Our approach considers all prevalent hierarchical clustering variants: single-, complete-, and average-linkage. We imprint the ownership in a dataset using watermarking principles, and we derive tight bounds on the expansion/contraction of distances incurred by the process. We leverage our analysis to design fast algorithms for right protection without exhaustively searching the vast design space. Finally, because the right-protection process introduces a user-tunable distortion on the dataset, we explore the possibility of using this mechanism for data obfuscation. We quantify the tradeoff between obfuscation and utility for spatiotemporal datasets and discover very favorable characteristics of the process. An additional advantage is that when one is interested in both right-protecting and obfuscating the original data values, the proposed mechanism can accomplish both tasks simultaneously.
Funder
European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC
Publisher
Association for Computing Machinery (ACM)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献