Hierarchical Convolutional Neural Network with Knowledge Complementation for Long-Tailed Classification

Author:

Zhao Hong1ORCID,Li Zhengyu1ORCID,He Wenwei1ORCID,Zhao Yan2ORCID

Affiliation:

1. Minnan Normal University, Zhangzhou, China

2. Minnan Normal University, Zhangzhou China

Abstract

Existing methods based on transfer learning leverage auxiliary information to help tail generalization and improve the performance of the tail classes. However, they cannot fully exploit the relationships between auxiliary information and tail classes and bring irrelevant knowledge to the tail classes. To solve this problem, we propose a hierarchical CNN with knowledge complementation, which regards hierarchical relationships as auxiliary information and transfers relevant knowledge to tail classes. First, we integrate semantics and clustering relationships as hierarchical knowledge into the CNN to guide feature learning. Then, we design a complementary strategy to jointly exploit the two types of knowledge, where semantic knowledge acts as a prior dependence and clustering knowledge reduces the negative information caused by excessive semantic dependence (i.e., semantic gaps). In this way, the CNN facilitates the utilization of the two complementary hierarchical relationships and transfers useful knowledge to tail data to improve long-tailed classification accuracy. Experimental results on public benchmarks show that the proposed model outperforms existing methods. In particular, our model improves accuracy by 3.46% compared with the second-best method on the long-tailed tieredImageNet dataset.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Publisher

Association for Computing Machinery (ACM)

Reference51 articles.

1. To Combat Multi-Class Imbalanced Problems by Means of Over-Sampling Techniques

2. Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. 2019. Learning imbalanced datasets with label-distribution-aware margin loss. In International Conference on Neural Information Processing Systems. 1567–1578.

3. Deep Self-Evolution Clustering

4. Hierarchy-aware Label Semantics Matching Network for Hierarchical Text Classification

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3