Volume probes: interactive data exploration on arbitrary grids

Author:

Speray Don1,Kennon Steve2

Affiliation:

1. The University of Texas at Austin, Dept. of Computer Sciences, The Computational Mechanics Company, Inc.

2. The Computational Mechanics Company, Inc.

Abstract

A taxonomy of computational grids used in scientific and engineering practice is presented and a technique for cutting them by, and displaying data on, 2D surfaces is developed. When sliced by a surface, these grids give rise to a graph G(C, F) where C, the nodes, are the intersected cells and F, the arcs, are their connectivity across faces. Starting from any cell known to be intersected by the surface (a seed), G is traversed breadth-first and is constructed locally on the fly, that is, only the spreading "front" explicitly exists at any time. Only sliced cells are visited, shared computed values such as edge intersections are passed to neighbors, and most of the geometric work is done via table lookup. A seed cell is found by fence-hopping from any cell to a distinguished point on the surface.This means of slicing grids is then utilized in an effective visualization tool. Concentrating on planar surfaces, local coordinate systems are defined for constructing clipping windows and linear transformations within the planes which further reduces display time and allows effects such as zooming within the windows. Several of these planar windows are then organized into various objects, called probes, that can exploit the mind's "retinal memory" when repeatedly swept through amorphous data.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,General Computer Science

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An efficient indoor large map global path planning for robot navigation;Expert Systems with Applications;2024-08

2. Visual Interactive Process Monitoring;Human Interface and the Management of Information. Information and Knowledge Design;2015

3. Graphics processing unit-based dynamic volume rendering for typhoons on a virtual globe;International Journal of Digital Earth;2014-05-02

4. Volume Visualization in Medicine;Handbook of Medical Image Processing and Analysis;2009

5. Hardware-Accelerated Volume Rendering;Visualization Handbook;2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3